130 research outputs found

    State-based load profile generation for modeling energetic flexibility

    Get PDF
    Communicating the energetic flexibility of distributed energy resources (DERs) is a key requirement for enabling explicit and targeted requests to steer their behavior. The approach presented in this paper allows the generation of load profiles that are likely to be feasible, which means the load profiles can be reproduced by the respective DERs. It also allows to conduct a targeted search for specific load profiles. Aside from load profiles for individual DERs, load profiles for aggregates of multiple DERs can be generated. We evaluate the approach by training and testing artificial neural networks (ANNs) for three configurations of DERs. Even for aggregates of multiple DERs, ratios of feasible load profiles to the total number of generated load profiles of over 99% can be achieved. The trained ANNs act as surrogate models for the represented DERs. Using these models, a demand side manager is able to determine beneficial load profiles. The resulting load profiles can then be used as target schedules which the respective DERs must follow

    06031 Abstracts Collection -- Organic Computing -- Controlled Emergence

    Get PDF
    Organic Computing has emerged recently as a challenging vision for future information processing systems, based on the insight that we will soon be surrounded by large collections of autonomous systems equipped with sensors and actuators to be aware of their environment, to communicate freely, and to organize themselves in order to perform the actions and services required. Organic Computing Systems will adapt dynamically to the current conditions of its environment, they will be self-organizing, self-configuring, self-healing, self-protecting, self-explaining, and context-aware. From 15.01.06 to 20.01.06, the Dagstuhl Seminar 06031 ``Organic Computing -- Controlled Emergence\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. The seminar was characterized by the very constructive search for common ground between engineering and natural sciences, between informatics on the one hand and biology, neuroscience, and chemistry on the other. The common denominator was the objective to build practically usable self-organizing and emergent systems or their components. An indicator for the practical orientation of the seminar was the large number of OC application systems, envisioned or already under implementation, such as the Internet, robotics, wireless sensor networks, traffic control, computer vision, organic systems on chip, an adaptive and self-organizing room with intelligent sensors or reconfigurable guiding systems for smart office buildings. The application orientation was also apparent by the large number of methods and tools presented during the seminar, which might be used as building blocks for OC systems, such as an evolutionary design methodology, OC architectures, especially several implementations of observer/controller structures, measures and measurement tools for emergence and complexity, assertion-based methods to control self-organization, wrappings, a software methodology to build reflective systems, and components for OC middleware. Organic Computing is clearly oriented towards applications but is augmented at the same time by more theoretical bio-inspired and nature-inspired work, such as chemical computing, theory of complex systems and non-linear dynamics, control mechanisms in insect swarms, homeostatic mechanisms in the brain, a quantitative approach to robustness, abstraction and instantiation as a central metaphor for understanding complex systems. Compared to its beginnings, Organic Computing is coming of age. The OC vision is increasingly padded with meaningful applications and usable tools, but the path towards full OC systems is still complex. There is progress in a more scientific understanding of emergent processes. In the future, we must understand more clearly how to open the configuration space of technical systems for on-line modification. Finally, we must make sure that the human user remains in full control while allowing the systems to optimize

    08141 Abstracts Collection -- Organic Computing - Controlled Self-organization

    Get PDF
    From March 30th to April 4th 2008, the Dagstuhl Seminar 08141 "Organic Computing - Controlled Self-organization"\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Building power demand forecasting using K-nearest neighbours model - practical application in Smart City Demo Aspern project

    Get PDF
    Following the ongoing transformation of the European power system, in the future, it will be necessary to locally balance the increasing share of decentralised renewable energy supply. Therefore, a reliable short-term load forecast at the level of single buildings is required. In this study, we use a forecaster, which is based on K-nearest neighbours approach and was introduced in an earlier publication, on three buildings of Smart City Demo Aspern project. The authors demonstrate how this forecaster can be applied on different buildings without any manual setup or parametrisation, showing that it is viable to replace load-profiling solutions for predicting electricity consumption at the level of single buildings

    Strategies for an adaptive control system to improve power grid resilience with smart buildings

    Get PDF
    Low-voltage distribution grids face new challenges through the expansion of decentralized, renewable energy generation and the electrification of the heat and mobility sectors. We present a multi-agent system consisting of the energy management systems of smart buildings, a central grid controller, and the local controller of a transformer. It can coordinate the provision of ancillary services for the local grid in a centralized way, coordinated by the central controller, and in a decentralized way, where each building makes independent control decisions based on locally measurable data. The presented system and the different control strategies provide the foundation for a fully adaptive grid control system we plan to implement in the future, which does not only provide resilience against electricity outages but also against communication failures by appropriate switching of strategies. The decentralized strategy, meant to be used during communication failures, could also be used exclusively if communication infrastructure is generally unavailable. The strategies are evaluated in a simulated scenario designed to represent the most extreme load conditions that might occur in low-voltage grids in the future. In the tested scenario, they can substantially reduce voltage range deviations, transformer temperatures, and line congestions

    A Concept for Standardized Benchmarks for the Evaluation of Control Strategies for Building Energy Management

    Get PDF
    Given the expected high penetration of renewable energy production in future electricity systems, it is common to consider buildings as a valuable source for the provisioning of flexibility to support the power grids. Motivated by this concept, a wide variety of control strategies for building energy management has been proposed throughout the last decades and especially for the previously mentioned components. However, these algorithms are usually implemented and evaluated for very specific settings and considerations. Thus, a neutral comparison, especially of performance measures, is nearly impossible. Inspired by recent developments in reinforcement learning research, we suggest the use of common environments (i.e. benchmarks) for filling this gap and finally propose a general concept for standardized benchmarks for the evaluation of control strategies for building energy management

    Adequacy of neural networks for wide-scale day-ahead load forecasts on buildings and distribution systems using smart meter data

    Get PDF
    Power system operation increasingly relies on numerous day-ahead forecasts of local, disaggregated loads such as single buildings, microgrids and small distribution system areas. Various data-driven models can be effective predicting specific time series one-step-ahead. The aim of this work is to investigate the adequacy of neural network methodology for predicting the entire load curve day-ahead and evaluate its performance for a wide-scale application on local loads. To do so, we adopt networks from other short-term load forecasting problems for the multi-step prediction. We evaluate various feed-forward and recurrent neural network architectures drawing statistically relevant conclusions on a large sample of residential buildings. Our results suggest that neural network methodology might be ill-chosen when we predict numerous loads of different characteristics while manual setup is not possible. This article urges to consider other techniques that aim to substitute standardized load profiles using wide-scale smart meters data

    Automated generation of models for demand side flexibility using machine learning – an overview

    Get PDF
    Flexibility in consumption and production provided by distributed energy resources (DERs) is a key to the integration of renewable energy sources into the energy system. However, even for identical DERs, the flexibility can vary widely, based on local constraints and circumstances. Therefore, handcrafting models can be labor-intensive and automating the generation of models could help increasing the volume of controllable flexibility in smart grids. Depending on the underlying mechanism for controlling demand side flexibility, there are various ways how an automation can be achieved. In this paper, we discuss fundamental concepts relevant to the automated generation of models for demand side flexibility, give an overview of different approaches, and point out fundamental differences. The main focus lies on model generation by means of machine learning techniques

    Ant colony optimization for resource-constrained project scheduling

    Get PDF
    An ant colony optimization (ACO) approach for the resource-constrained project scheduling problem (RCPSP) is presented. Several new features that are interesting for ACO in general are proposed and evaluated. In particular, the use of a combination of two pheromone evaluation methods by the ants to find new solutions, a change of the influence of the heuristic on the decisions of the ants during the run of the algorithm, and the option that an elitist ant forgets the best-found solution are studied. We tested the ACO algorithm on a set of large benchmark problems from the Project Scheduling Library. Compared to several other heuristics for the RCPSP, including genetic algorithms, simulated annealing, tabu search, and different sampling methods, our algorithm performed best on average. For nearly one-third of all benchmark problems, which were not known to be solved optimally before, the algorithm was able to find new best solutions
    • …
    corecore